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A model of phase transitions in problems of the mechanics of a continuous medium is considered, 

which goes back to Gibbs [l] and was further developed in [Z-S]. An extension of the variational 

formulation of the problem is proposed, which makes it possible to prove a theorem on the existence of 

a global maximum of the energy functional for a thermoelastic medium for certain restrictions on the 

specific energy density. 

1. PHYSICAL FORMULATION OF THE PROBLEM 

The mathematical feature of the variational problem under consideration is that it is necessary 
to vary the vector-valued displacement function u simultaneously with the location of phases 
Q’. The physical nature of the problem concerning the origin and development of the nuclea- 
tion centres of a new phase, which have a rather complex structure, makes it necessary to 
consider the characteristic functions of Q* belonging to a special functional space, namely, the 
space of functions with bounded variation. The above reasons introduce difficulties into the 
mathematical problem. 

An elastic medium occupying a bounded domain R c R”, (m = 2, 3) is characterized by the 
displacement field, i.e. a vector-valued function u(n) equal to zero on the boundary of the 
domain, and by the temperature T, constant over the whole body. It is assumed that the elastic 
medium can exist in a two-phase state. Each phase is characterized by its deformation energy 
density F*(z&t), U(X), X, 7’) (the plus and minus superscripts correspond to the first and second 
phase, respectively, and ti(x) = VU(X) is the matrix formed by the first-order derivatives of 
U(X)) and its location in the non-deformed state, i.e. bv sets a*:, where W n&X =$ and . II 

_ Q+ n LX = $3. It is natural to take the functional 

I[u,R+,,T]= 1 p+F+( fi,u,x,T)dx+ j p-F-(i,u,x,T)&, 
n+ a- 

&2- =R\R+, u=u(x) 

as the total deformation energy. 
Here o* is the density of the medium in the ~1~s and minus phases, 

minimum of (1.1) is to be found among all admissible vector fields U(X) 
function U(X) and set R’ that minimize (1.1) define an equilibrium state 

(l-1) 

respectively. The 
and sets CF. The 
of the two-phase 
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elastic medium. If either a+ or Sz- is empty, the medium in an equilibrium state consists of a 
single phase only. 

UnfortunateIy, (1.1) may also not reach its minimum. 

To explain this assertion we consider a model example in which Q c R3 is the spherical layer 0 < r, < 

r s r, < 00 and U(T) is a scalar function (a displacement along the radius), Li(r) being its derivative. When 
there are radical displacements only the non-zero components of the deformation tensor have the form 

e, = ri + ulr and e,, = ul I in spherical coordinates. 

We define F’ by 

We shall minimize the functional (Ll), (1.2) with p+ = p- = 1 

f[u,%2+]=47t J r2f(ir+u/r-1)2+(ufr)2]dr+4n J r*[(ii+~/r+~)~+(u/r~~~~r 
o+ o- 

on the set of functions zl(r) E di [c, r,] and measurable sets R’. The functional (1.1) (1.2) is positive for 

every u E B$ [I,, r2] and every measurable set SL’. However, infZ[n, a+] over all II E B!. [r,, 51 and all 

measurable sets Q+ in the interval [r,, r2] is equal to zero. 

In fact, let us divide [Q, r2] into 2” equal intervals. We number the resulting intervals starting from r,. 
We take Qz to be the sequence consisting of unions of all intervals with odd numbers and Sz; with even 
ones, Let U,(I) be a continuous piecewise continuously differentiable function such that I;,(r)= 1 for 
x E Szi and $,(r)- 1 for x E a; with u,(I~)= n,(rz) = 0. Then the function U,(I) has the form of a “saw” and 

belongs to W: [rt, rr]. It is seen that Z[IL,, Sz:] + 0 as tz + m for the functional (l.l), (1.2). 
The example in question is constructed by the method employed in [6]. We note the energy density 

(1.2) satisfies the material indifference principle [7]. 
Note that in the above example the minimizing sequence U,(T), Szi for (l.l), (1.2) contains 2”-’ phase 

separation points, the functional I, which can be regarded as the energy, converging to zero. 

It is natural to introduce an antagonistic term in (1.1) similar to the Griffith surface energy 
and proportional to the area of the generated separation surface. The energy functional (1.1) is 
then replaced by 

Z[u,Q+,Tl=nj+p F ( + + ti,u,x,T)dx-t J p-F-(li,u,x,T)Q!x+olSI 
o- 

(1.3) 

where S is the boundary between Q” and Q2-, IS I is its area, and CT is a positive constant. The 
term CY IS I has a physical interpretation as the surface energy distributed on the boundary 
between the phases and caused by the different nature of the medium of each phase. 

2. FUNCTIONS OF BOUNDED VARIATION AND CACCIOPPOLI SETS 

Because sets of rather complex structure are admissible as R’, the meaning of IS I in (1.3) 
must be refined and extended. The notion of the surface area of the boundary of a set can be 
extended by a traditional method used in the theory of minimal surfaces [8] and based on the 
theory of functions of bounded variation. 

Let QcR’“, ma 2 be a bounded domain and let f(x)~L,@). We set (in what follows 
integration is always over Sz) 

JlDjl = sup(&x)divg(x)dx: g E Cb(Q Rm), Ig(x)l S 1 for x E Q) (2.1) 

We shall say that f E L,(Q) has bounded variation in Sz if f I Of I c M. 
The above definition of variation is a natural generalization of the one-dimensional case. We 
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recall that a function of one variable has a bounded variation if it can be decomposed into the 
sum of a continuous function and a step function. 

We denote by BV(ft) the linear space of functions of bounded variation belonging to &(Q). 
The space SV@) is a Banach space with norm II f I&“= II f II -+-I I Df I. 

It is obvious that W,“(Q) c SV(S2). 

As the following example shows, the opposite inclusion is not true. Let w c R”, let &I E C2, and let 
x(x) be the characteristic function of o A Q. If o r\R #a, then x Q W@t). However 

JILJXI = I(&B) n RI 

where I @co) nR I is the area of the part of the boundary of w contained in Sz. 

(2.2) 

Definition. A measurable set A cS2 is called a Caccioppoli set if its characteristic function 
x,(x) belongs to BV(S2). The finite number I DxA I is called the perimeter of A. 

Clearly, il\ A is also a Caccioppoli set and the perimeters of A and Q \ A coincide by virtue 
of (2.1). We also observe that &J does not contribute to the perimeter of A. In the case when 
A has piecewise-smooth boundary the generalized definition of the area of the boundary 
surface coincides with the classical one. 

Using the above mathematical ideas we can recast the variational problem (1.3). We take as 
R, in (1.3) an arbitrary measurable set with finite perimeter and we shall mean by IS I the 
value of its perimeter, IS I = j I Dx. where x is the characteristic function of Q,. In terms of the 
characteristic function x and its variation the functional (1.3) can be written as 

Q&X, TJ= ItXp+F+( ;,u,x,T)+(l-X)p-F-(li,u,x,T)}dr+oIIDXI (2.3) 

The representation (2.3) is a natural extension of (1.3). An advantage of (2.3) is that it has a 
purely analytic character and contains no geometrical objects, i.e. the sets G* or their separation 

boundary, which would be inconvenient for later investigation. The representation (2.3) enables us to 

investigate the variational problem using the whole arsenal of methods for studying functionals in a 

Banach space. The change from domains 0’ with smooth boundary to sets with finite perimeter 
corresponds to “completing” the space of admissibie domains. 

It should be noted that the need to introduce sets with complex geometry corresponds to the 
physical nature of the problems concerned with the origin and development of the nucleation 
centres of a new phase. 

In the present paper we state the restrictions on the densities F*, for which (2.3) attains its 
minimum on the set of admissible displacements and study the process giving rise to a two- 
phase state in the classical theory of thermoelasticity, 

Note that the various alternative spaces of functions of bounded variation are applicable in 
other areas of the mechanics of continuous media, for example, in the theory of plasticity 191. 

To conclude the present section we shall state an assertion, which will prove useful later. 

Lemma 2.1. SJ c R” be a bounded domain whose boundary satisfies the Lipschitz condition. 
Then for all p E [I, m/(m- 1)) and ah characteristic functions X(X) that satisfy the conditions 

the inequality 

is satisfied, where l/p’+ l/p= I, Is1 I is the measure of Q, and y = y(p, R) > 0 is a fixed 
constant. 

We will give an outline of the proof of the Iemmn. Using the theorem on the compactness of the 



892 N. F. Morozov and V. G. Osmolovskii 

embedding of We into L,(R) and Egorov’s theorem, one can prove the inequality 

which holds for all ME W:(n) vanishing on a set (depending on the function) of measure not less than 
I RI /4. The inequality (2.6) can be extended to functions from VB(S2). This extension has the form 

(JljvJdxpJ c $Dfi, fE VB(!a), (2.7) 

where f vanishes in a set (which depends on f) of measure not less than I fz l/2. If f = x, where x is a 
characteristic function that satisfies the hypothesis of the lemma, then, by (2.7) we get 

3. THEOREM ON THE EXISTENCE OF A GLOBAL MINIMUM 

Let Qc R” be a bounded domain with Lipschitz boundary and let R”“” be the space of 
(m x m)-matrices. For D E R”““, u E R”, and x E R we specify F*(D, u, x, T). Henceforth, we 
take a displacement field U(X) as u and the matrix formed by the first-order derivatives of u(x) 
as D. The derivatives with respect to the corresponding argument will be denoted by 
subscripts attached to these functions. We denote by I. I both the modulus of a scalar or vector- 
valued function, and the norm of a matrix. We fix numbers p and a and a fiction C(T) such 
that 

PE (L-1, a>O, C(T)>0 

We assume that F* are jointly continuous functions with respect to their arguments, 
continuously differentiable and convex with respect to the components of D, and satisfy the 
inequalities 

For the characteristic function y E (1, -1, a 3 0, C(T) > 0 of a Caccioppoli set fz’ c Sz, a 
vector-valued function u(x) = $j (Q R”), and a fixed value T E R’ we define I(u, x, 2’) by 
(2.3). This functional is well defined. It will be called the energy functional of a two-phase 
medium. 

Finally, let us state the variational problem: among all functions 

U(X)=$(R,Rm), X(X)EBV(Q) (3.2) 

(X(X) being the characteristic function) it is required to find those that realize the minimum of 
f(u, x, T) for a fixed T. 

Exisrence ~~e~~e~. The functional 1(zi, x, T) attains its global minimum in the set (3.2) for 
every fixed T. 

The proof of this theorem, even under more general assumptions, can be found in [lo]. 

4. THE PROBLEM OF PHASE TRANSITIONS IN THE CLASSICAL THEORY OF 
ELASTICITY 

The above variational formulation enables us to invoke the direct methods of variational 
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calculus to answer the question of the qualitative behaviour of a medium in a two-phase state. 
We shall illustrate these possibilities in the case of the classical theory of elasticity. We assume 
that the phases differ only by their coefficients of thermal expansion a* > 0, having the same 
Lame coefficients 3L > 0 and 1_1> 0. In this case the densities F* are given by [ll] 

a’Tdivu+$divu)’ +:[uLjuij +u~~u~~]+F*(O,T,)= 

=_ 
(4.1) 

where Er and E, are the first and second invariants of the deformation tensor T = T’- To and, 
for p+ = p- = 1 and F+(O, To) = F-(0, T,) the functional (2.3) can be represented in the form 

[a]=a+-a-f0 

or, on extracting a perfect square, as 

(4.2) 

(4.3) 

It follows that the phase transition problem is to be studied near the temperature T,, the 
phases being indistinguishable when T’ = To. 

The following mathematical results have physical meaning for a finite variation of T near 
zero. For p= 2 it is obvious that the hypotheses of the existence theorem for the densities (4.1) 
are satisfied. It follows from (4.2) that the following equalities hold for IL and x from the set 
(3.2) 

I[u,~,Tl=ZI~,~,Tl, ri=-u, i=l-x; Z[u,x,T]=I[-u,x,-T] (4.4) 

fi and i also being members of (3.2). Therefore the family of pairs (u, x} that minimize (2.3) 
on the set (3.2) consists of at least two pairs. Since k = 1 -x, one of the integrals 

Ixdr or lj$~ (4.5) 

is not greater than a half of the measure of R. 
For T = 0 the functional (2.3) attains its last value on the set (3.2) only for (u, x} with u E 0 

and x. = 0 or x = 1, which corresponds to the single-phase state of an elastic medium. The 
purpose of the present section is to study the origin of the two-phase state as the temperature 
changes. 

For each temperature T E R’ we define 

j[T] = inf I[u,x,T] 

where the infimum is taken over all pairs {u, x) from (3.2). Note that ?[T] s I[O, 0, T] = 0. 

Lemma 4.1. A number k, 0 c k <: 00 exists such that 

j[T]=O for ITIGk, j[T]cO for ITI> k 
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Proof. We define the following sets M and N on the real axis 

M=(TeR’, i[T]<O}, N=(TeR', i[T]=O) 

By the second equality in (4.4), T and -T belong simultaneously either to M or to N. We divide the 
proof into a number of stages. 

1. N is a non-empty closed set. Suppose that {u, x) realizes the minimum of (2.3) on the set (3.2). We 

shall prove that for IT I small enough the function X(X) is either identically equal to one or zero. All T 

with sufficiently small modulus will then beIong to N. The condition x E 0 or x = 1 is equivalent to 

JlDxl = 0 (4.6) 

Since, for a fixed T, the pair @, g](i; = -u, 2 = 1 -x) also minimizes (2.3) on the set (3.2), we have 

The latter relationship and the representation (4.3) of I[u, x, T] lead to the inequality 

for x0=x and x,,=ji. 

Let x0 be identical with the function (71 or i) for which 

jx*u!x s tsw 

(4.7) 

(4‘8) 

Combining (4.7) with (2.5) and taking (4.8) into account, we get 

Since x0 satisfies (4.8), if 

(4.10) 

then (4.9) implies that 

JID~ = o (4.11) 

If x0 =x, then (4.11) is identical with (4.6). If x0 =i, then (4.6) follows from (4.11) and the equality 

JID~I=JILQI. 
We shall now prove that N is a closed set. Let T, EN, (n= 1, 2,. . . ,) T, -a T. as n -+ 00. We must prove 

that j[T,]= 0. Suppose that this is not the case. Let &]c 0. The functional Z[u, x, T.] attains its minimum 

on the set (3.2) for a certain pair {rlO, x0). Then Z[u,, x0, T,] = i[T] <: 0. Since I[u,, x0, T] is a continuous 
function of T, we arrive at f[T,]< I[uO, x0, T,] < 0 f or sufficientIy large 13, which is a contradiction. 

2. 7%~ sef M is ~~~~z-e~?~~~. If T. E M rlre~r every T strch tht I T I a IT, t also belongs to M. We wifl first 

prove that M is non-empty. We fix a non-solenoidal vector field u(x) E I%?! (62, R”). Let diver > 0 on a sub- 
domain w c R with smooth boundary. As x we take the characteristic function of w. Then, for sufficiently 
large T. the functional (2.3) will be negative for the selected u and x. Therefore T E M if T is large 
enough. 

We now prove the second part of the assertion. Since T=O belongs to N, it follows that T, # 0. Let 
T, $0, T, E M and let I[u, 2, ‘X] attain its minimum on the set (3.2) on the pair (rho, x0), i.e. 
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The latter relationship and (4.2) imply that 

[alh&ivq& > 0 
(4.12) 

Thus 

Z[-uo.~o,-7-l cI[--u~, XO,-T.I<O for Tc-T 

j[T]cj[T,]=?[-T,]<O for I7l>T,. 

The lemma follows from assertions 1 and 2. 

Lemma 4.2. For I T I < k the functional (2.3) attains its minimum on the set (3.2) only for (u, 
x} with u = 0 and x = 0 or x = 1. When IT I > k the functional (2.3) attains its minimum on (3.2) 
only for {u, x) such that u+O xf0 and ~$1. 

Proof. For IT, I< k let the minimum be attained at [uO, x,] with x0+0 and x0+1. We assume that 
T. > 0, since for T. = 0 the minimum is realized only by pairs with u0 = 0 and x0 = 0 or x0 = 1, and (by the 

second inequality in (4.4)) replacing T, by -T. results just in u0 being replaced by -u,,. Since Z[u,, x0, 
T.] = @,I = 0, (4.2) implies (4.12) from which, as before, we obtain (4.13), which contradicts the definition 
of k and the choice of T.. The resulting contradiction proves that either x0 = 0 or x0 = 1. In this case 

U0 =O. 

Since for x I 0 and x I 1 the functional (4.2) is non-negative, it follows that for I T, I > k the minimum is 

realized by {uO, x,} such that x0+0, x0+1, and u,+O. 

Lemma 4.3. Let IT. I > k and let the minimum of (2.3) on the set (3.2) be realized by {h, x0) 
for T = T.. Then 

1 < <&a]2(~#.r)t~p, (4.14) 

where yis the constant inLemma 2.1, llp+llp’=l, and l<p<ml(m-1). 

Proof. Replacing u0 by -u,, and x0 by l-x,, if necessary, we shall assume that x0 satisfies (4.8) Using 

(4.7) (which holds for x,, from the minimizing pair), the estimate from Lemma 2.1 (valid by virtue of 

(4.8)) and cancelling the non-vanishing factor j I Dx,, I, (by virtue of Lemma 4.2 and the assumption that 
I T. I > k), we obtain (4.14). 

Let us consider the physical interpretation of Lemmas 4.1-4.3. Since only single-phase states 
with vanishing displacement field are possible for IT I < k, they give rise to two isolated minima 
of the energy functional. Suppose that a state with density F- (i.e. x = 0) is realized for T = 0. 
This state is then preserved for temperatures T E (-k, k). A two-phase state (x f 0, x + 1) with 
non-zero displacement field appears when the temperature crosses the critical value ‘k, the 
occurrence of the phase with density F’ having a jump-like character (inequality (4.14)). 

Consider the single-phase state u = 0, x = 0 for I T I > k. We shall prove that it remains a local 
minimum of the energy functional in the following sense. 

Lemma 4.4. For every T a positive number 6 =6(T) 4 InI/ exists such that for all 
u E $‘(a, R’“) and all characteristic functions x(x) E BV(SL) with 

the inequality 

I[u, x, T] > Z[O, 0, 7-j = 0. (4.16) 

is satisfied. 
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Proof. Suppose that the opposite inequality to (4.16) is satisfied for some u, and x0 with 
x0+ 0 and I&& s I i2 l/2. Then (4.7) and, consequently, (4.9) are satisfied for this pair. If 

(4.17) 

then xa satisfied (4.11), which contradicts the first inequality in (4.15). We determine li(7’) 
from (4.17). 

The latter two lemmas show that the origin of a new phase resembles the process of 
“flipping” in the theory of shells. 

The work reported here was supported financially by the Russian Fund for Fundamental 
Research (94-Ol-01393}. 
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